水产品养殖行业的特点,水产品养殖行业前景
水产养殖业的优势
全科兽医和水产兽医适合的区域不同,所以在不同的地方各有优势,也就是不在一个区域谁吃香没有可比性,如果在水乡有水产养殖业,当然是水产兽医吃香,人家找水产养殖技术服务肯定找水产兽医;如果不是在水产养殖业的地方,在畜牧养殖的地方当然是全科兽医吃香。
水产养殖的前景与优势
就业前景不错。
目前,国内很多高等院校开设了水产养殖方面的专业,但基于我国在水产养殖方面的实情,我国的水产业仍处于初级阶段。因此,我国水产业需要很多拥有该专业知识的技术人员,甚至目前的养殖行业中出现了求大于供的现象
水产养殖业的优势和劣势
增氧机对水产品的养殖利大于弊。因为一般传统的增氧机1千瓦功率可以增加1.1~1.9千克氧,而微孔管在淡水中可以3.4~4.9千克氧,在海水中可增加9千克氧,在淡水中是传统增氧机的2.6倍,在海水中是传统增氧机的4.2倍;一般每亩虾池配备叶轮式增氧机需要0.75千瓦功率,而使用微孔管增氧,则只需要配备0.25千瓦功率,增氧机可以使水产养殖户的利润增加较多,基本没有弊端。
水产养殖业发展前景
很好
水产养殖业是中国农业结构中发展最快的产业之一。我国水产品产量主要来自水产养殖,2018-2020年水产养殖产量保持稳定增长,初步统计2021年水产养殖产量接近5400万吨。
水产养殖产业发展现状
2022年水产养殖前景非常可观,在居民消费率提高,消费结构升级背景下,水产品消费增长率将持续超过消费总体增长率水平,保持增长势头,行业盈利性和成长性得以延续。
一方面需求增长,供给约束,水产养殖量价齐升,基本面持续向好,提升了行业的投资价值,另一方面,水域资源稀缺性和通胀预期提高行业的相对估值水平,未来水产养殖行业依然是比较好的。
水产养殖业的发展
好就业,前景也很不错.
随着全省沿海经济开发的推进,我国海洋经济结构的优化升级,加之全国海洋渔业资源的限制捕捞,水产养殖业会成为朝阳产业,对技术和人才的需求将越来越多,海洋特色明显的水产养殖专业毕业生的前景会越来越好。近些年,全国水产养殖生产保持着较好的发展势头:养殖规模进一步扩大,结构调整取得新进展;渔业重点省的优势养殖区域和主导养殖品种正在逐步形成;水产养殖经济运行基本平稳,水产养殖产品价格上升,比较效益进一步提高,有利促进农业结构调整和农民增收。水产品市场需求的增加带动了水产养殖业的快速发展,从而为此专业的毕业生提供了良好的就业条件。随着社会经济的发展和国家对农业的不断重视,水产养殖业地位越来越高,行业发展空间也越来越大,人才需求也越来越大,从每年的人才需求看,毕业生数量总是满足不了行业人才需求的数量,因而就业前景非常广阔。
水产养殖业特点
海洋能利用-正文利用一定的方式方法、设备装置把各种海洋能转换成为电能或其他可利用形式的能。它是人类利用自然能源的重要方面。海洋能的种类 海洋能是海水运动过程中产生的可再生能,主要包括温差能、潮汐能、波浪能、潮流能、海流能、盐差能等。潮汐能和潮流能源自月球、太阳和其他星球引力,其他海洋能均源自太阳辐射。海水温差能是一种热能。低纬度的海面水温较高,与深层水形成温度差,可产生热交换。其能量与温差的大小和热交换水量成正比。潮汐能、潮流能、海流能、波浪能都是机械能。潮汐的能量与潮差大小和潮量成正比。波浪的能量与波高的平方和波动水域面积成正比。在河口水域还存在海水盐差能(又称海水化学能),入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透,可产生渗透压力,其能量与压力差和渗透能量成正比。海洋能的特点 ①蕴藏量大,并且可以再生不绝。估计地球上海水温差能可用功率达1010千瓦数量级;潮汐能、波浪能、海流能、海水盐差能等可再生功率都达109 千瓦数量级。②能流的分布不均、密度低。大洋表面层与500~1000米深层之间的较大温差仅20°C左右,沿岸较大潮差约 7~10米,而近海较大潮流、海流的流速也只有4~7节。③能量多变、不稳定。其中海水温差能、海流能和盐差能的变化较为缓慢,潮汐和潮流能则呈短时周期规律变化,波浪能有显著的随机性。海洋能利用的技术和设施 海洋能利用的关键环节是能量转换,不同形式的海洋能,其转换技术原理和装置也不同。海水温差能的利用是将热能转为机械能后,再转换为电能。热能转换为机械能采取热力循环法,通常的流程有两种(图1):①闭路循环(又称中间介质法),采用由蒸发器、汽轮发电机、冷凝器和工质泵组成的系统,蒸发器里通过海洋表层热水,冷凝器里通过海洋深层冷水,工质泵把液态氨或其他工质作为中间介质从冷凝器泵入蒸发器,液态氨因热水作用变为高压氨气,驱动汽轮机发电;而从汽轮机出来的低压气态氨回到冷凝器又重新冷却成液态氧,如此形成闭路循环。②开路循环(又称闪蒸法或扩容法),把热海水在部分真空的蒸发器(闪蒸器)内蒸发成蒸汽,驱动汽轮机发电;使用过的低压蒸汽再进入冷凝器中冷却,冷凝的脱盐水或回收,或排入海洋。早期的实验装置多采取开路循环流程,由于设备易受腐蚀,60年代后改用闭路循环流程。海水温差发电实际利用的热效率很低,往往只有2%左右,所处理的冷、热水量较多,故相应的各种部件尺寸都很庞大,伸向海底深水层的长冷水管技术难度较大。潮汐、波浪、潮流和海流能的利用仅需将机械能转换为电能,一般分为三步:第一步是接受能量,如建造潮汐水库,用以接受、蓄贮潮汐能;采用转轮(水车)以吸收海流、潮流动能;用水柱-气室、随波浪升降或摇摆的浮子、可压缩气袋等接受波浪能。第二步是传输,通常用机械、液力、气动等方法,传输终端一般设置水轮机或气轮机。潮汐电站采用适应低水位差的灯泡贯流式水轮机组或全贯流式水轮机组(图2);而波能的传输近年来采用对称翼型空气涡轮机,在波浪作用下能做单方向旋转。第三步是转换成电力或其他动力。通常通过发电机转换成电力。由于海洋能不稳定,所以在整个转换过程中一般还需备有贮能设施,如水库、气罐、蓄电池和飞轮等。海水盐差能利用的转换方法近年来才开始研究。如有一种设想是在河口入海处建造两座堤坝,中间为缓冲水库,在缓冲水库与外海的通道内设置半透膜。缓冲水库内的淡水通过半透膜渗出,其渗透压力导致缓冲库的水位降低,利用缓冲库与河流的水位差可以发电。这种方法由于进出水量相当大,故所需的工程规模也很大。利用海洋能的工程设施,按其设置位置一般分为海滨式和海上式两类。前者是以滨海陆地或浅海水域为基地,后者是在深水海域设置浮式结构。海滨式和离岸近的海上式设施,可用海底电缆或压力管道将动力传输上岸;离岸远的海上设施,只能就地利用动力,如制氨或生产海水化工产品。海洋能利用的经济效益 海洋能的利用目前还很昂贵,以法国的朗斯潮汐电站为例,其单位千瓦装机投资合1500美元(1980年价格),高出常规火电站。但在海洋能利用的过程中,还能获得其他综合效益。如潮汐电站的水库能兼顾水产养殖、交通运输;海洋热能转换装置获得的富含营养盐深层海水,可用于发展渔业;开路循环系统能淡化海水和提取含有用元素的卤水;大型波力发电装置可同时起到消波防浪,保护海港、海岸、海上建筑物和水产养殖场等的效果。目前在严重缺乏能源的沿海地区(包括岛屿),把海洋能作为一种补充能源加以利用还是可取的。发展概况 海洋能利用最早是从利用潮汐能开始的。11世纪就出现了潮汐磨坊。1966年法国建成朗斯潮汐电站,装机容量24万千瓦,是目前世界上规模最大的潮汐能发电站(见彩图)。1981年中国江厦潮汐试验电站(见彩图)第一台 500千瓦机组正式投产。世界第一个波能转换装置的专利是法国于1779年取得的。1965年,日本研制用于航标灯的波力发电装置获得成功。现在日本、英国、挪威和中国等国家正在进行多种波力发电试验研究,其中较大型的是日本等 5国在日本海试验的“海明号”波力发电船,第一期试验年发电量19万度,并初步成功地把电力输送到了岸上。日本还建立了岸式波力发电试验站。中国研制出采用对称翼型空气涡轮机的新型波力发电装置,装在南海海域航标灯浮上试用(图3)。1881年法国人首先提出海水温差能利用的原理。20世纪70年代以来,美国用在研究海洋热能转换的经费在世界上占居首位。1979年,美国在夏威夷岛海域驳船上进行了50千瓦装机容量海水温差发电试验。其后,日本在瑙鲁岛建立岸式试验性海水温差电站,装机容量100千瓦。随着世界能源需求的日益增长和海洋能利用技术的提高,预期20世纪内,有可能在潮差较大的河口海岸处兴建10万至 100万千瓦级的潮汐电站;并会出现中、小型实用的波力发电装置和试验的海水温差发电装置。从长远看,海洋能的利用将成为世界新能源的重要方面
养殖项目
养殖项目